
An animated interactive SR latch
(R1, R2 = 1 kΩ; R3, R4 = 10 kΩ).

Flip-flop (electronics)
In electronics, flip-flops and latches are circuits that have two
stable states that can store state information – a bistable
multivibrator. The circuit can be made to change state by signals
applied to one or more control inputs and will output its state (often
along with its logical complement too). It is the basic storage
element in sequential logic. Flip-flops and latches are fundamental
building blocks of digital electronics systems used in computers,
communications, and many other types of systems.

Flip-flops and latches are used as data storage elements to store a
single bit (binary digit) of data; one of its two states represents a
"one" and the other represents a "zero". Such data storage can be
used for storage of state, and such a circuit is described as
sequential logic in electronics. When used in a finite-state machine,
the output and next state depend not only on its current input, but
also on its current state (and hence, previous inputs). It can also be
used for counting of pulses, and for synchronizing variably-timed input signals to some reference timing
signal.

The term flip-flop has historically referred generically to both level-triggered (asynchronous, transparent, or
opaque) and edge-triggered (synchronous, or clocked) circuits that store a single bit of data using gates.[1]

Modern authors reserve the term flip-flop exclusively for edge-triggered storage elements and latches for
level-triggered ones.[2][3] The terms "edge-triggered", and "level-triggered" may be used to avoid
ambiguity.[4]

When a level-triggered latch is enabled it becomes transparent, but an edge-triggered flip-flop's output only
changes on a clock edge (either positive going or negative going).

Different types of flip-flops and latches are available as integrated circuits, usually with multiple elements
per chip. For example, 74HC75 is a quadruple transparent latch in the 7400 series.

The first electronic latch was invented in 1918 by the British physicists William Eccles and F. W.
Jordan.[5][6] It was initially called the Eccles–Jordan trigger circuit and consisted of two active elements
(vacuum tubes).[7] The design was used in the 1943 British Colossus codebreaking computer[8] and such
circuits and their transistorized versions were common in computers even after the introduction of integrated
circuits, though latches and flip-flops made from logic gates are also common now.[9][10] Early latches were
known variously as trigger circuits or multivibrators.

According to P. L. Lindley, an engineer at the US Jet Propulsion Laboratory, the flip-flop types detailed
below (SR, D, T, JK) were first discussed in a 1954 UCLA course on computer design by Montgomery
Phister, and then appeared in his book Logical Design of Digital Computers.[11][12] Lindley was at the time
working at Hughes Aircraft under Eldred Nelson, who had coined the term JK for a flip-flop which

History
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Schematics from the Eccles and
Jordan trigger relay patent filed
1918, one drawn as a cascade of
amplifiers with a positive
feedback path, and the other as a
symmetric cross-coupled pair

A transparent latch circuit based
on bipolar junction transistors

changed states when both inputs were on (a logical "one"). The other
names were coined by Phister. They differ slightly from some of the
definitions given below. Lindley explains that he heard the story of the
JK flip-flop from Eldred Nelson, who is responsible for coining the
term while working at Hughes Aircraft. Flip-flops in use at Hughes at
the time were all of the type that came to be known as J-K. In
designing a logical system, Nelson assigned letters to flip-flop inputs as
follows: #1: A & B, #2: C & D, #3: E & F, #4: G & H, #5: J & K.
Nelson used the notations "j-input" and "k-input" in a patent
application filed in 1953.[13]

Transparent or asynchronous latches can be built around a single pair
of cross-coupled inverting elements: vacuum tubes, bipolar transistors,
field-effect transistors, inverters, and inverting logic gates have all been
used in practical circuits.

Clocked flip-flops are specially designed for synchronous systems;
such devices ignore their inputs except at the transition of a dedicated
clock signal (known as clocking, pulsing, or strobing). Clocking
causes the flip-flop either to change or to retain its output signal based
upon the values of the input signals at the transition. Some flip-flops
change output on the rising edge of the clock, others on the falling
edge.

Since the elementary amplifying stages are inverting, two stages can be
connected in succession (as a cascade) to form the needed non-
inverting amplifier. In this configuration, each amplifier may be
considered as an active inverting feedback network for the other
inverting amplifier. Thus the two stages are connected in a non-
inverting loop although the circuit diagram is usually drawn as a
symmetric cross-coupled pair (both the drawings are initially
introduced in the Eccles–Jordan patent).

Flip-flops and latches can be divided into common types: SR ("set-reset"), D ("data"), T ("toggle"), and JK
(see History section above). The behavior of a particular type can be described by what is termed the
characteristic equation, which derives the "next" (i.e., after the next clock pulse) output, Qnext in terms of
the input signal(s) and/or the current output, .

When using static gates as building blocks, the most fundamental latch is the simple SR latch, where S and
R stand for set and reset, meaning a set S=1 sets the bit to 1 and a reset R=1 sets the bit to 0. Alternatively,
you can call the two inputs set 1 and set 0 which may clear some confusion (the term set alone may be
misunderstood as setting the bit to the input provided to set); this naming also makes it intuitive in the
explanation below that trying to set 0 and 1 at the same time should make the SR latch behave
unpredictably.

Implementation

Types

Simple set-reset latches
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An animation of a SR latch,
constructed from a pair of cross-
coupled NOR gates. Red and black
mean logical '1' and '0', respectively.

The SR latch can be constructed from a pair of cross-coupled NOR or NAND logic gates. The stored bit is
present on the output marked Q. In order to help understand the circuit implementations below, it is
convenient to think of NAND, NOR, AND and OR as controlled operations. Namely, although all of these
gates are symmetric in their input, it is convenient to pick one bit as a control bit set by our choice, and the
other bit as the input to be processed depending on the state of the control. The, as you can see below, it
turns out that all of this gates have one control value that ignores the input and outputs a constant values,
while the other control values lets the input pass (maybe complemented). Lets call x the input and the other
bit will be the control, then:

Essentially, they can all be used as switches that either set a specific value or let an input value pass.

The SR NOR latch consists of two parallel NOR gates where the
output of each NOR is also fanned out into one input of the other
NOR, as shown in the figure. We call feedback inputs, or simply
feedbacks these output-to-input connections. The remaining inputs
we will use as control inputs as explained above. Notice that at this
point, because everything is symmetric, it does not matter to which
inputs the outputs are connected. We now break the symmetry by
choosing which of the remaining control inputs will be our set and
reset and we can call "set NOR" the NOR gate with the set control
and "reset NOR" the NOR with the reset control; in the figures the
set NOR is the bottom one and the reset NOR is the top one. The
output of the reset NOR will be our stored bit Q, while we will see
that the output of the set NOR stores its complement Q.

To derive the behavior of the SR NOR latch, consider S and R as control inputs and remember that, from
the equations above, set and reset NOR with control 1 will fix their outputs to 0, while set and reset NOR
with control 0 will act as a NOT gate. With this it is now possible to derive the behavior of the SR latch as
simple conditions (instead of, for example, assigning values to each line see how they propagate).

While the R and S are both zero, both R NOR and S NOR simply impose the feedback being
the complement of the output, this is satisfied as long as the outputs are the complement of
each other. Thus the outputs Q and Q are maintained in a constant state, whether Q=0 or
Q=1.
If S=1 while R=0, then the set NOR will fix Q=0, while the reset NOR will adapt and set Q=1.
Once S is set back to zero the values are maintained as explained above.
Similarly, if R=1 while S=0, then the reset NOR fixes Q=0 while the set NOR with adapt Q=1.
Again the state is maintained if R is set back to 0.
If R=S=1, the NORs will fix both outputs to 0, which is not a valid state storing
complementary values.

SR NOR latch
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An animated SR latch. Black and
white mean logical '1' and '0',
respectively.

A. S = 1, R = 0: Set
B. S = 0, R = 0: Hold
C. S = 0, R = 1: Reset
D. S = 1, R = 1: Not allowed
Transitioning from the restricted
combination (D) to (A) leads to an
unstable state.

How an SR NOR latch works

SR latch operation[4]

Characteristic table Excitation table

S R Qnext Action Q Qnext S R

0 0 Q Hold state 0 0 0 X

0 1 0 Reset 0 1 1 0

1 0 1 Set 1 0 0 1

1 1 X Not allowed 1 1 X 0

Note: X means don't care, that is, either 0 or 1 is a valid value.

The R = S = 1 combination is called a restricted combination or a
forbidden state because, as both NOR gates then output zeros, it
breaks the logical equation Q = not Q. The combination is also
inappropriate in circuits where both inputs may go low
simultaneously (i.e. a transition from restricted to keep). The output
would lock at either 1 or 0 depending on the propagation time
relations between the gates (a race condition).

To overcome the restricted combination, one can add gates to the
inputs that would convert (S, R) = (1, 1) to one of the
non-restricted combinations. That can be:

Q = 1 (1, 0) – referred to as an S (dominated)-latch
Q = 0 (0, 1) – referred to as an R (dominated)-latch

This is done in nearly every programmable logic controller.

Keep state (0, 0) – referred to as an E-latch

Alternatively, the restricted combination can be made to toggle the
output. The result is the JK latch.

The characteristic equation for the SR latch is:

 or [14]

where A + B means (A or B), AB means (A and B)

Another expression is:

 with [15]

The circuit shown below is a basic NAND latch. The inputs are also generally designated S and R for Set
and Reset respectively. Because the NAND inputs must normally be logic 1 to avoid affecting the latching
action, the inputs are considered to be inverted in this circuit (or active low).

SR NAND latch
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An SR latch constructed from cross-
coupled NAND gates

Symbol for an
SR NAND
latch

An SR AND-OR latch. Light green
means logical '1' and dark green
means logical '0'. The latch is
currently in hold mode (no change).

The circuit uses the same feedback as SR NOR, just replacing
NOR gates with NAND gates, to "remember" and retain its logical
state even after the controlling input signals have changed. Again,
recall that a 1-controlled NAND always outputs 0, while a 0-
controlled NAND acts as a NOT gate. When the S and R inputs are
both high, feedback maintains the Q outputs to the previous state.
When either is zero, they fix their output bits to 0 while to other
adapts to the complement. S=R=0 produces the invalid state.

SR latch operation

S R Action

0 0 Q = 1, Q = 1; not allowed

0 1 Q = 1

1 0 Q = 0

1 1 No change; random initial

From a teaching point of view, SR latches drawn as a pair of cross-
coupled components (transistors, gates, tubes, etc.) are often hard to
understand for beginners. A didactically easier explanation is to
draw the latch as a single feedback loop instead of the cross-
coupling. The following is an SR latch built with an AND gate with
one inverted input and an OR gate. Note that the inverter is not
needed for the latch functionality, but rather to make both inputs
High-active.

SR AND-OR latch operation

S R Action

0 0 No change; random initial

1 0 Q = 1

X 1 Q = 0

Note that the SR AND-OR latch has the benefit that S = 1, R = 1 is well defined. In above version of the
SR AND-OR latch it gives priority to the R signal over the S signal. If priority of S over R is needed, this
can be achieved by connecting output Q to the output of the OR gate instead of the output of the AND gate.

The SR AND-OR latch is easier to understand, because both gates can be explained in isolation, again with
the control view of AND and OR from above. When neither S or R is set, then both the OR gate and the
AND gate are in "hold mode", i.e., they let the input through, their output is the input from the feedback
loop. When input S = 1, then the OR gate outputs 1, regardless of the other input from the feedback loop
("set mode"). When input R = 1 then the AND gate outputs 0, regardless of the other input from the
feedback loop ("reset mode"). And since the AND gate takes the output of the OR gate as input, R has
priority over S. Latches drawn as cross-coupled gates may look less intuitive, as the behavior of one gate
appears to be intertwined with the other gate. The standard NOR or NAND latches could also be re-drawn

SR AND-OR latch
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NAND Gated SR Latch (Clocked SR
flip-flop). Note the inverted inputs.

with the feedback loop, but in their case the feedback loop does not show the same signal value throughout
the whole feedback loop. However, the SR AND-OR latch has the drawback that it would need an extra
inverter, if an inverted Q output is needed.

Note that the SR AND-OR latch can be transformed into the SR NOR latch using logic transformations:
inverting the output of the OR gate and also the 2nd input of the AND gate and connecting the inverted Q
output between these two added inverters; with the AND gate with both inputs inverted being equivalent to
a NOR gate according to De Morgan's laws.

The JK latch is much less frequently used than the JK flip-flop. The JK latch follows the following state
table:

JK latch truth table

J K Qnext Comment

0 0 Q No change

0 1 0 Reset

1 0 1 Set

1 1 Q Toggle

Hence, the JK latch is an SR latch that is made to toggle its output (oscillate between 0 and 1) when passed
the input combination of 11.[16] Unlike the JK flip-flop, the 11 input combination for the JK latch is not
very useful because there is no clock that directs toggling.[17]

Latches are designed to be transparent. That is, input signal changes cause immediate changes in output.
Additional logic can be added to a simple transparent latch to make it non-transparent or opaque when
another input (an "enable" input) is not asserted. When several transparent latches follow each other, using
the same enable signal, signals can propagate through all of them at once. However, following a
transparent-high latch by a transparent-low latch (or vice-versa) causes the state and output to only change
on clock edges, forming what is called a master–slave flip-flop.

A gated SR latch can be made by adding a second level of NAND
gates to an inverted SR latch. The extra NAND gates further invert
the inputs so a SR latch becomes a gated SR latch (a SR latch
would transform into a gated SR latch with inverted enable).

Alternatively, a gated SR latch (with non-inverting enable) can be
made by adding a second level of AND gates to a SR latch.

With E high (enable true), the signals can pass through the input
gates to the encapsulated latch; all signal combinations except for
(0, 0) = hold then immediately reproduce on the (Q, Q) output, i.e.
the latch is transparent.

JK latch

Gated latches and conditional transparency

Gated SR latch
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A gated SR latch circuit diagram constructed from
AND gates (on left) and NOR gates (on right)

Symbol for a
gated SR latch

Symbol for a
gated D latch

With E low (enable false) the latch is closed (opaque)
and remains in the state it was left the last time E was
high.

The enable input is sometimes a clock signal, but more
often a read or write strobe. When the enable input is a
clock signal, the latch is said to be level-sensitive (to
the level of the clock signal), as opposed to edge-
sensitive like flip-flops below.

Gated SR latch operation

E/C Action

0 No action (keep state)

1 The same as non-
gated SR latch

This latch exploits the fact that, in the two active input combinations (01 and 10) of a gated SR latch, R is
the complement of S. The input NAND stage converts the two D input states (0 and 1) to these two input
combinations for the next SR latch by inverting the data input signal. The low state of the enable signal
produces the inactive "11" combination. Thus a gated D-latch may be considered as a one-input
synchronous SR latch. This configuration prevents application of the restricted input combination. It is also
known as transparent latch, data latch, or simply gated latch. It has a data input and an enable signal
(sometimes named clock, or control). The word transparent comes from the fact that, when the enable input
is on, the signal propagates directly through the circuit, from the input D to the output Q. Gated D-latches
are also level-sensitive with respect to the level of the clock or enable signal.

Transparent latches are typically used as I/O ports or in asynchronous systems, or in synchronous two-phase
systems (synchronous systems that use a two-phase clock), where two latches operating on different clock
phases prevent data transparency as in a master–slave flip-flop.

The truth table below shows that when the enable/clock input is 0, the D input has no effect on the output.
When E/C is high, the output equals D.

Gated D latch truth table

E/C D Q Q Comment

0 X Qprev Qprev No change

1 0 0 1 Reset

1 1 1 0 Set

Gated D latch
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A gated D latch based on an SR NAND latch

 

A gated D latch based on an SR NOR latch

An animated gated D latch. Black and white
mean logical '1' and '0', respectively.

A. D = 1, E = 1: set
B. D = 1, E = 0: hold
C. D = 0, E = 0: hold
D. D = 0, E = 1: reset

 

A gated D latch in pass transistor
logic, similar to the ones in the

CD4042 or the CD74HC75 integrated
circuits.

The classic gated latch designs have some undesirable characteristics.[18] They require double-rail logic or
an inverter. The input-to-output propagation may take up to three gate delays. The input-to-output
propagation is not constant – some outputs take two gate delays while others take three.

Designers looked for alternatives.[19] A successful alternative is the Earle latch. It requires only a single data
input, and its output takes a constant two gate delays. In addition, the two gate levels of the Earle latch can,
in some cases, be merged with the last two gate levels of the circuits driving the latch because many
common computational circuits have an OR layer followed by an AND layer as their last two levels.
Merging the latch function can implement the latch with no additional gate delays.[18] The merge is
commonly exploited in the design of pipelined computers, and, in fact, was originally developed by John G.
Earle to be used in the IBM System/360 Model 91 for that purpose.[20]

The Earle latch is hazard free.[21] If the middle NAND gate is omitted, then one gets the polarity hold
latch, which is commonly used because it demands less logic.[21][22] However, it is susceptible to logic
hazard. Intentionally skewing the clock signal can avoid the hazard.[22]

Earle latch
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D flip-flop
symbol

Earle latch uses complementary enable inputs:
enable active low (E_L) and enable active high

(E_H)

 

An animated Earle latch. Black and white
mean logical '1' and '0', respectively.

A. D = 1, E_H = 1: set
B. D = 0, E_H = 1: reset
C. D = 1, E_H = 0: hold

The D flip-flop is widely used, and known as a "data" flip-flop. The D flip-flop
captures the value of the D-input at a definite portion of the clock cycle (such as the
rising edge of the clock). That captured value becomes the Q output. At other times,
the output Q does not change.[23][24] The D flip-flop can be viewed as a memory cell,
a zero-order hold, or a delay line.[25]

Truth table:

Clock D Qnext

Rising edge 0 0

Rising edge 1 1

Non-rising X Q

(X denotes a don't care condition, meaning the signal is irrelevant)

Most D-type flip-flops in ICs have the capability to be forced to the set or reset state (which ignores the D
and clock inputs), much like an SR flip-flop. Usually, the illegal S = R = 1 condition is resolved in D-type
flip-flops. Setting S = R = 0 makes the flip-flop behave as described above. Here is the truth table for the
other possible S and R configurations:

Inputs Outputs

S R D > Q Q

0 1 X X 0 1

1 0 X X 1 0

1 1 X X 1 1

D flip-flop
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4-bit serial-in, parallel-out (SIPO)
shift register

A few different types of edge triggered D flip‑flops

A positive-edge-triggered D flip-
flop A positive-edge-triggered D flip-

flop with set and reset

These flip-flops are very useful, as they form the basis for shift
registers, which are an essential part of many electronic devices.
The advantage of the D flip-flop over the D-type "transparent latch"
is that the signal on the D input pin is captured the moment the flip-
flop is clocked, and subsequent changes on the D input will be
ignored until the next clock event. An exception is that some flip-
flops have a "reset" signal input, which will reset Q (to zero), and
may be either asynchronous or synchronous with the clock.

The above circuit shifts the contents of the register to the right, one bit position on each active transition of
the clock. The input X is shifted into the leftmost bit position.

This circuit[26] consists of two stages
implemented by SR NAND latches.
The input stage (the two latches on
the left) processes the clock and data
signals to ensure correct input signals
for the output stage (the single latch
on the right). If the clock is low, both
the output signals of the input stage
are high regardless of the data input;
the output latch is unaffected and it
stores the previous state. When the
clock signal changes from low to
high, only one of the output voltages
(depending on the data signal) goes
low and sets/resets the output latch: if
D = 0, the lower output becomes low;
if D = 1, the upper output becomes
low. If the clock signal continues staying high, the outputs keep their states regardless of the data input and
force the output latch to stay in the corresponding state as the input logical zero (of the output stage) remains
active while the clock is high. Hence the role of the output latch is to store the data only while the clock is
low.

The circuit is closely related to the gated D latch as both the circuits convert the two D input states (0 and 1)
to two input combinations (01 and 10) for the output SR latch by inverting the data input signal (both the
circuits split the single D signal in two complementary S and R signals). The difference is that in the gated
D latch simple NAND logical gates are used while in the positive-edge-triggered D flip-flop SR NAND
latches are used for this purpose. The role of these latches is to "lock" the active output producing low
voltage (a logical zero); thus the positive-edge-triggered D flip-flop can also be thought of as a gated D
latch with latched input gates.

A master–slave D flip-flop is created by connecting two gated D latches in series, and inverting the enable
input to one of them. It is called master–slave because the master latch controls the slave latch's output value
Q and forces the slave latch to hold its value whenever the slave latch is enabled, as the slave latch always
copies its new value from the master latch and changes its value only in response to a change in the value of
the master latch and clock signal.

Classical positive-edge-triggered D flip-flop

Master–slave edge-triggered D flip-flop
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A master–slave D flip-flop. It responds on the
falling edge of the enable input (usually a clock)

An implementation of a master–slave D flip-flop
that is triggered on the rising edge of the clock

An implementation of a
dual-edge-triggered D
flip-flop

For a positive-edge triggered master–slave D flip-flop,
when the clock signal is low (logical 0) the "enable"
seen by the first or "master" D latch (the inverted clock
signal) is high (logical 1). This allows the "master"
latch to store the input value when the clock signal
transitions from low to high. As the clock signal goes
high (0 to 1) the inverted "enable" of the first latch
goes low (1 to 0) and the value seen at the input to the
master latch is "locked". Nearly simultaneously, the
twice inverted "enable" of the second or "slave" D
latch transitions from low to high (0 to 1) with the
clock signal. This allows the signal captured at the
rising edge of the clock by the now "locked" master
latch to pass through the "slave" latch. When the clock
signal returns to low (1 to 0), the output of the "slave"
latch is "locked", and the value seen at the last rising
edge of the clock is held while the "master" latch
begins to accept new values in preparation for the next
rising clock edge.

Removing the leftmost inverter in the circuit creates a D-type flip-flop that strobes on the falling edge of a
clock signal. This has a truth table like this:

D Q > Qnext

0 X Falling 0

1 X Falling 1

Flip-Flops that read in a new value on the rising and the falling edge of the
clock are called dual-edge-triggered flip-flops. Such a flip-flop may be built
using two single-edge-triggered D-type flip-flops and a multiplexer, or by
using two single-edge triggered D-type flip-flops and three XOR gates.

An efficient functional alternative to a D flip-flop can be made with dynamic
circuits (where information is stored in a capacitance) as long as it is clocked
often enough; while not a true flip-flop, it is still called a flip-flop for its
functional role. While the master–slave D element is triggered on the edge of a
clock, its components are each triggered by clock levels. The "edge-triggered D flip-flop", as it is called
even though it is not a true flip-flop, does not have the master–slave properties.

Edge-triggered D flip-flops are often implemented in integrated high-speed operations using dynamic logic.
This means that the digital output is stored on parasitic device capacitance while the device is not
transitioning. This design of dynamic flip flops also enables simple resetting since the reset operation can be
performed by simply discharging one or more internal nodes. A common dynamic flip-flop variety is the
true single-phase clock (TSPC) type which performs the flip-flop operation with little power and at high

Dual-edge-triggered D flip-flop

Edge-triggered dynamic D storage element

https://en.wikipedia.org/wiki/File:Negative-edge_triggered_master_slave_D_flip-flop.svg
https://en.wikipedia.org/wiki/File:Negative-edge_triggered_master_slave_D_flip-flop.svg
https://en.wikipedia.org/wiki/File:D-Type_Flip-flop_Diagram.svg
https://en.wikipedia.org/wiki/File:D-Type_Flip-flop_Diagram.svg
https://en.wikipedia.org/wiki/File:D-Type_Flip-flop_dual_Diagram.svg
https://en.wikipedia.org/wiki/File:D-Type_Flip-flop_dual_Diagram.svg
https://en.wikipedia.org/wiki/Dynamic_logic_(digital_electronics)


Circuit symbol of
a dual-edge-
triggered D flip-
flop

A dual-edge triggered D flip-flop
implemented using XOR gates, and
no multiplexer

A CMOS IC implementation of a dynamic edge-
triggered flip-flop with reset

A circuit symbol
for a T-type flip-
flop

speeds. However, dynamic flip-flops will typically not work at static or low clock
speeds: given enough time, leakage paths may discharge the parasitic capacitance
enough to cause the flip-flop to enter invalid states.

If the T input is high, the T flip-flop changes state ("toggles") whenever the clock
input is strobed. If the T input is low, the flip-flop holds the previous value. This
behavior is described by the characteristic equation:

 (expanding the XOR operator)

and can be described in a truth table:

T flip-flop operation[27]

Characteristic table Excitation table

Comment Comment

0 0 0 Hold state
(no clock) 0 0 0 No change

0 1 1 Hold state
(no clock) 1 1 0 No change

1 0 1 Toggle 0 1 1 Complement

1 1 0 Toggle 1 0 1 Complement

When T is held high, the toggle flip-flop divides the
clock frequency by two; that is, if clock frequency is
4  MHz, the output frequency obtained from the flip-
flop will be 2  MHz. This "divide by" feature has
application in various types of digital counters. A T
flip-flop can also be built using a JK flip-flop (J & K
pins are connected together and act as T) or a D flip-
flop (T input XOR Qprevious drives the D input).

The JK flip-flop, augments the behavior of the SR flip-
flop (J: Set, K: Reset) by interpreting the J = K = 1
condition as a "flip" or toggle command. Specifically, the combination J = 1, K = 0 is a
command to set the flip-flop; the combination J = 0, K = 1 is a command to reset the
flip-flop; and the combination J = K = 1 is a command to toggle the flip-flop, i.e.,
change its output to the logical complement of its current value. Setting J = K = 0
maintains the current state. To synthesize a D flip-flop, simply set K equal to the
complement of J (input J will act as input D). Similarly, to synthesize a T flip-flop, set
K equal to J. The JK flip-flop is therefore a universal flip-flop, because it can be
configured to work as an SR flip-flop, a D flip-flop, or a T flip-flop.

The characteristic equation of the JK flip-flop is:

T flip-flop

JK flip-flop
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A circuit symbol
for a positive-
edge-triggered
JK flip-flop

JK flip-flop timing diagram

Flip-flop setup, hold and clock-to-
output timing parameters

and the corresponding truth table is:

JK flip-flop operation[27]

Characteristic table Excitation table

J K Comment Qnext Q Qnext Comment J K

0 0 Hold state Q 0 0 No change 0 X

0 1 Reset 0 0 1 Set 1 X

1 0 Set 1 1 0 Reset X 1

1 1 Toggle Q 1 1 No change X 0

The input must be held steady in a period around the rising edge of
the clock known as the aperture. Imagine taking a picture of a frog
on a lily-pad.[28] Suppose the frog then jumps into the water. If you
take a picture of the frog as it jumps into the water, you will get a
blurry picture of the frog jumping into the water—it's not clear
which state the frog was in. But if you take a picture while the frog
sits steadily on the pad (or is steadily in the water), you will get a
clear picture. In the same way, the input to a flip-flop must be held
steady during the aperture of the flip-flop.

Setup time is the minimum amount of time the data input should be
held steady before the clock event, so that the data is reliably
sampled by the clock.

Hold time is the minimum amount of time the data input should be
held steady after the clock event, so that the data is reliably sampled by the clock.

Aperture is the sum of setup and hold time. The data input should be held steady throughout this time
period.[28]

Recovery time is the minimum amount of time the asynchronous set or reset input should be inactive
before the clock event, so that the data is reliably sampled by the clock. The recovery time for the
asynchronous set or reset input is thereby similar to the setup time for the data input.

Removal time is the minimum amount of time the asynchronous set or reset input should be inactive after
the clock event, so that the data is reliably sampled by the clock. The removal time for the asynchronous set
or reset input is thereby similar to the hold time for the data input.

Short impulses applied to asynchronous inputs (set, reset) should not be applied completely within the
recovery-removal period, or else it becomes entirely indeterminable whether the flip-flop will transition to
the appropriate state. In another case, where an asynchronous signal simply makes one transition that

Timing considerations

Timing parameters
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happens to fall between the recovery/removal time, eventually the flip-flop will transition to the appropriate
state, but a very short glitch may or may not appear on the output, dependent on the synchronous input
signal. This second situation may or may not have significance to a circuit design.

Set and Reset (and other) signals may be either synchronous or asynchronous and therefore may be
characterized with either Setup/Hold or Recovery/Removal times, and synchronicity is very dependent on
the design of the flip-flop.

Differentiation between Setup/Hold and Recovery/Removal times is often necessary when verifying the
timing of larger circuits because asynchronous signals may be found to be less critical than synchronous
signals. The differentiation offers circuit designers the ability to define the verification conditions for these
types of signals independently.

Flip-flops are subject to a problem called metastability, which can happen when two inputs, such as data
and clock or clock and reset, are changing at about the same time. When the order is not clear, within
appropriate timing constraints, the result is that the output may behave unpredictably, taking many times
longer than normal to settle to one state or the other, or even oscillating several times before settling.
Theoretically, the time to settle down is not bounded. In a computer system, this metastability can cause
corruption of data or a program crash if the state is not stable before another circuit uses its value; in
particular, if two different logical paths use the output of a flip-flop, one path can interpret it as a 0 and the
other as a 1 when it has not resolved to stable state, putting the machine into an inconsistent state.[29]

The metastability in flip-flops can be avoided by ensuring that the data and control inputs are held valid and
constant for specified periods before and after the clock pulse, called the setup time (tsu) and the hold time
(th) respectively. These times are specified in the data sheet for the device, and are typically between a few
nanoseconds and a few hundred picoseconds for modern devices. Depending upon the flip-flop's internal
organization, it is possible to build a device with a zero (or even negative) setup or hold time requirement
but not both simultaneously.

Unfortunately, it is not always possible to meet the setup and hold criteria, because the flip-flop may be
connected to a real-time signal that could change at any time, outside the control of the designer. In this
case, the best the designer can do is to reduce the probability of error to a certain level, depending on the
required reliability of the circuit. One technique for suppressing metastability is to connect two or more flip-
flops in a chain, so that the output of each one feeds the data input of the next, and all devices share a
common clock. With this method, the probability of a metastable event can be reduced to a negligible value,
but never to zero. The probability of metastability gets closer and closer to zero as the number of flip-flops
connected in series is increased. The number of flip-flops being cascaded is referred to as the "ranking";
"dual-ranked" flip flops (two flip-flops in series) is a common situation.

So-called metastable-hardened flip-flops are available, which work by reducing the setup and hold times as
much as possible, but even these cannot eliminate the problem entirely. This is because metastability is more
than simply a matter of circuit design. When the transitions in the clock and the data are close together in
time, the flip-flop is forced to decide which event happened first. However fast the device is made, there is
always the possibility that the input events will be so close together that it cannot detect which one
happened first. It is therefore logically impossible to build a perfectly metastable-proof flip-flop. Flip-flops

Metastability
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are sometimes characterized for a maximum settling time (the maximum time they will remain metastable
under specified conditions). In this case, dual-ranked flip-flops that are clocked slower than the maximum
allowed metastability time will provide proper conditioning for asynchronous (e.g., external) signals.

Another important timing value for a flip-flop is the clock-to-output delay (common symbol in data sheets:
tCO) or propagation delay (tP), which is the time a flip-flop takes to change its output after the clock edge.
The time for a high-to-low transition (tPHL) is sometimes different from the time for a low-to-high transition
(tPLH).

When cascading flip-flops which share the same clock (as in a shift register), it is important to ensure that
the tCO of a preceding flip-flop is longer than the hold time (th) of the following flip-flop, so data present at
the input of the succeeding flip-flop is properly "shifted in" following the active edge of the clock. This
relationship between tCO and th is normally guaranteed if the flip-flops are physically identical.
Furthermore, for correct operation, it is easy to verify that the clock period has to be greater than the sum
tsu + th.

Flip-flops can be generalized in at least two ways: by making them 1-of-N instead of 1-of-2, and by
adapting them to logic with more than two states. In the special cases of 1-of-3 encoding, or multi-valued
ternary logic, such an element may be referred to as a flip-flap-flop.[30]

In a conventional flip-flop, exactly one of the two complementary outputs is high. This can be generalized
to a memory element with N outputs, exactly one of which is high (alternatively, where exactly one of N is
low). The output is therefore always a one-hot (respectively one-cold) representation. The construction is
similar to a conventional cross-coupled flip-flop; each output, when high, inhibits all the other outputs.[31]

Alternatively, more or less conventional flip-flops can be used, one per output, with additional circuitry to
make sure only one at a time can be true.[32]

Another generalization of the conventional flip-flop is a memory element for multi-valued logic. In this case
the memory element retains exactly one of the logic states until the control inputs induce a change.[33] In
addition, a multiple-valued clock can also be used, leading to new possible clock transitions.[34]

Latching relay
Pulse transition detector
Sample and hold
Schmitt trigger
Static random-access memory

1. For example, Digital Equipment Corporation's Logic Handfbook Flip Chip™ Modules 1969
edition calls transparent RS latches as "R/S Flip Flops"
(http://www.bitsavers.org/pdf/dec/handbooks/Digital_Logic_Handbook_1969.pdf page 44)

Propagation delay

Generalizations
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